organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-Benzyliminomethyl-4-chlorophenol

Xinli Zhang and Zongxiao Li*

Department of Chemistry, Baoji University of Arts and Sciences, Baoji, Shaanxi 721007, People's Republic of China Correspondence e-mail: zhangxinli6008@163.com

Received 17 December 2007; accepted 4 February 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.006 Å; R factor = 0.045; wR factor = 0.116; data-to-parameter ratio = 14.1.

The title compound, $C_{14}H_{12}CINO$, is a Schiff base derived from the condensation of equimolar quantities of 5-chlorosalicylaldehyde and 1-benzylamine. The molecule has a *trans* configuration with respect to the imine C—N double bond. The N atom is involved in an intramolecular O-H···N hydrogen bond.

Related literature

For related literature, see: Ali *et al.* (2002); Cukurovali *et al.* (2002); Tarafder *et al.* (2002).

Experimental

Crystal data $C_{14}H_{12}CINO$ $M_r = 245.70$ Monoclinic, $P2_1/c$ a = 14.3693 (18) Å b = 6.0401 (8) Å c = 14.777 (2) Å $\beta = 103.911 (2)^{\circ}$ $V = 1244.9 (3) \text{ Å}^{3}$ Z = 4Mo $K\alpha$ radiation $\mu = 0.29 \text{ mm}^{-1}$ T = 298 (2) K

Data collection

Bruker SMART APEX	5203 measured reflections
diffractometer	2177 independent reflections
Absorption correction: multi-scan	864 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.046$
$T_{\min} = 0.864, T_{\max} = 0.969$	

 $0.52 \times 0.38 \times 0.11 \text{ mm}$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.045$	154 parameters
$wR(F^2) = 0.116$	H-atom parameters constrained
S = 0.98	$\Delta \rho_{\rm max} = 0.15 \text{ e } \text{\AA}^{-3}$
2177 reflections	$\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O1−H1···N1	0.82	1.87	2.597 (4)	148

Data collection: *SMART* (Bruker, 2000); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 2000); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors thank Baoji University of Arts and Sciences for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CS2068).

References

Ali, M. A., Mirza, A. H., Butcher, R. J., Tarafder, M. T. H., Keat, T. B. & Ali, A. M. (2002). J. Inorg. Biochem. 92, 141-148.

Bruker (2000). *SMART* (Version 5.0) and *SAINT* (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.

Cukurovali, A., Yilmaz, I., Özmen, H. & Ahmedzade, M. (2002). Transition Met. Chem. 27, 171-176.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Tarafder, M. T. H., Jin, K. T., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H. K. (2002). Polyhedron, 21, 2547-2554. supplementary materials

Acta Cryst. (2008). E64, 0726 [doi:10.1107/S1600536808003802]

2-Benzyliminomethyl-4-chlorophenol

X. Zhang and Z. Li

Comment

Schiff base compounds have been of great interest for many years. These compounds played important role in the development of coordination chemistry related to catalysis and enzymatic reactions, magnetism and molecular architectures. These properties stimulated our interest in this field. The title compound was obtained as a new antipyrine Schiff base.

Its molecular structure and a crystal packing are illustrated in Figs.1 and 2, respectively. Atom N1 is a bridging N atom linking the two parts of the compound. The dihedral angle between the two phenyl rings is $72.91 (9)^{\circ}$. In the crystal structure, there exists an intramolecular O—H—N hydrogen bond involving hydroxyl atom O1 and imine atom N1 (Table 1).

Experimental

All reagents used were of analytical grade from commercial sources and used without further purification. 5-Chlorosalicylaldehyde (0.1 mmol, 15.65 mg) and 1-benzylamine (0.1 mmol, 10.7 mg) were dissolved in methanol (10 ml). The resulting solution was stirred for 30 min, filtered and the filtrate allowed to stand at room temperature. Yellow crystals of the title compound appeared after two weeks of slow evaporation of the solvent.

Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances in the range 0.93–0.96 Å and $U_{iso}(H) = 1.2U_{eq}$ or $1.5U_{eq}(C/O)$

Figures

Fig. 1. The structure of the title compound with 30% probability displacement ellipsoids. H atoms are shown as spheres of arbitrary radii. The dotted line represent a hydrogen bond.

Fig. 2. Packing of the molecules viewed along the *b* axis.

2-Benzyliminomethyl-4-chlorophenol

$F_{000} = 512$
$D_{\rm x} = 1.311 {\rm ~Mg~m}^{-3}$
Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Cell parameters from 877 reflections
$\theta = 2.8 - 25.1^{\circ}$
$\mu = 0.29 \text{ mm}^{-1}$
T = 298 (2) K
Rod, yellow
$0.52 \times 0.38 \times 0.11 \text{ mm}$

Data collection

Bruker SMART APEX diffractometer	2177 independent reflections
Radiation source: fine-focus sealed tube	864 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.046$
T = 298(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.5^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -17 \rightarrow 17$
$T_{\min} = 0.864, \ T_{\max} = 0.969$	$k = -7 \rightarrow 6$
5203 measured reflections	$l = -17 \rightarrow 10$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.045$	H-atom parameters constrained
$wR(F^2) = 0.116$	$w = 1/[\sigma^2(F_o^2) + (0.0248P)^2 + 0.4795P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 0.98	$(\Delta/\sigma)_{max} < 0.001$
2177 reflections	$\Delta \rho_{max} = 0.15 \text{ e } \text{\AA}^{-3}$
154 parameters	$\Delta \rho_{min} = -0.22 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

Primary atom site location: structure-invariant direct methods Extinction correction: none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cl1	0.24166 (8)	0.1883 (2)	0.07747 (9)	0.1401 (6)

N1	0.6895 (2)	0.0444 (5)	0.2091 (2)	0.0878 (10)
01	0.60143 (16)	-0.2928 (4)	0.11796 (16)	0.0884 (8)
H1	0.6468	-0.2203	0.1478	0.133*
C1	0.6093 (3)	0.1388 (6)	0.1982 (2)	0.0772 (11)
H1A	0.6070	0.2803	0.2223	0.093*
C2	0.5198 (2)	0.0337 (6)	0.1488 (2)	0.0580 (8)
C3	0.5196 (3)	-0.1769 (6)	0.1098 (2)	0.0613 (9)
C4	0.4338 (3)	-0.2717 (6)	0.0612 (2)	0.0738 (10)
H4	0.4337	-0.4118	0.0350	0.089*
C5	0.3499 (3)	-0.1585 (7)	0.0520 (2)	0.0769 (11)
Н5	0.2927	-0.2222	0.0194	0.092*
C6	0.3489 (3)	0.0483 (7)	0.0904 (2)	0.0740 (10)
C7	0.4331 (3)	0.1431 (6)	0.1383 (2)	0.0717 (10)
H7	0.4320	0.2831	0.1642	0.086*
C8	0.7753 (3)	0.1670 (8)	0.2583 (3)	0.1196 (16)
H8A	0.8064	0.0884	0.3147	0.143*
H8B	0.7567	0.3121	0.2759	0.143*
C9	0.8432 (2)	0.1917 (8)	0.1974 (3)	0.0717 (10)
C10	0.8429 (3)	0.3790 (7)	0.1443 (3)	0.0875 (12)
H10	0.8002	0.4932	0.1469	0.105*
C11	0.9053 (3)	0.3980 (8)	0.0877 (3)	0.1031 (15)
H11	0.9042	0.5248	0.0517	0.124*
C12	0.9683 (3)	0.2347 (11)	0.0834 (3)	0.1099 (16)
H12	1.0110	0.2503	0.0454	0.132*
C13	0.9693 (3)	0.0497 (9)	0.1342 (4)	0.1057 (15)
H13	1.0120	-0.0640	0.1308	0.127*
C14	0.9075 (3)	0.0294 (7)	0.1905 (3)	0.0904 (12)
H14	0.9091	-0.0991	0.2255	0.108*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	0.1065 (8)	0.1452 (11)	0.1546 (11)	0.0485 (8)	0.0038 (7)	0.0075 (9)
N1	0.0742 (19)	0.117 (3)	0.075 (2)	-0.030 (2)	0.0236 (18)	-0.004 (2)
O1	0.0883 (17)	0.0730 (17)	0.113 (2)	0.0039 (14)	0.0419 (15)	-0.0134 (15)
C1	0.102 (3)	0.080 (3)	0.056 (2)	-0.032 (3)	0.030 (2)	-0.014 (2)
C2	0.078 (2)	0.051 (2)	0.050 (2)	-0.007 (2)	0.0238 (18)	0.0015 (18)
C3	0.078 (2)	0.052 (2)	0.062 (2)	-0.002 (2)	0.033 (2)	0.0004 (19)
C4	0.096 (3)	0.057 (2)	0.078 (3)	-0.015 (2)	0.038 (2)	-0.015 (2)
C5	0.084 (3)	0.091 (3)	0.055 (2)	-0.016 (2)	0.016 (2)	-0.007 (2)
C6	0.082 (3)	0.077 (3)	0.063 (3)	0.014 (2)	0.017 (2)	0.011 (2)
C7	0.102 (3)	0.053 (2)	0.061 (2)	0.001 (2)	0.023 (2)	-0.0014 (19)
C8	0.092 (3)	0.186 (5)	0.086 (3)	-0.059 (3)	0.031 (3)	-0.032 (3)
C9	0.065 (2)	0.079 (3)	0.068 (3)	-0.016 (2)	0.011 (2)	-0.012 (2)
C10	0.072 (3)	0.073 (3)	0.111 (4)	0.005 (2)	0.011 (2)	-0.004 (3)
C11	0.094 (3)	0.099 (4)	0.111 (4)	-0.022 (3)	0.015 (3)	0.030 (3)
C12	0.079 (3)	0.160 (5)	0.096 (4)	-0.018 (3)	0.029 (3)	-0.002 (4)
C13	0.096 (3)	0.111 (4)	0.105 (4)	0.024 (3)	0.013 (3)	-0.021 (3)

supplementary materials

C14	0.114 (3)	0.074 (3)	0.075 (3)	-0.004 (3)	0.007 (3)	0.003 (2)
Geometric parar	neters (Å, °)					
Cl1—C6		1.727 (3)	С7-	—H7		0.9300
N1—C1		1.260 (4)	C8-	—С9		1.485 (4)
N1—C8		1.471 (4)	C8-	—H8A		0.9700
O1—C3		1.349 (3)	C8-	—H8B		0.9700
O1—H1		0.8200	С9-	C14		1.368 (5)
C1—C2		1.462 (4)	С9-			1.376 (5)
C1—H1A		0.9300	C10)—C11		1.370 (5)
С2—С7		1.385 (4)	C10)—H10		0.9300
С2—С3		1.396 (4)	C11	—C12		1.351 (5)
C3—C4		1.392 (4)	C11	—H11		0.9300
C4—C5		1.365 (4)	C12	2—С13		1.344 (5)
C4—H4		0.9300	C12	2—Н12		0.9300
С5—С6		1.373 (4)	C13	3—C14		1.361 (5)
С5—Н5		0.9300	C13	3—Н13		0.9300
C6—C7		1.372 (4)	C14	4—H14		0.9300
C1—N1—C8		117.9 (4)	N1-			109.6
C3—O1—H1		109.5	С9-	—С8—Н8А		109.6
N1—C1—C2		122.4 (4)	N1-			109.6
N1—C1—H1A		118.8	С9-	C8H8B		109.6
C2—C1—H1A		118.8	H84	А—С8—Н8В		108.1
С7—С2—С3		118.4 (3)	C14	I		117.2 (4)
C7—C2—C1		120.6 (3)	C14	4—С9—С8		121.8 (5)
C3—C2—C1		121.0 (3)	C10)—C9—C8		121.0 (4)
O1—C3—C4		118.5 (3)	C11	—С10—С9		120.3 (4)
O1—C3—C2		121.4 (3)	C11	—С10—Н10		119.9
C4—C3—C2		120.1 (3)	С9-	—С10—Н10		119.9
C5—C4—C3		119.8 (3)	C12	2—C11—C10		120.8 (4)
С5—С4—Н4		120.1	C12	2—С11—Н11		119.6
C3—C4—H4		120.1	C10)—C11—H11		119.6
C4—C5—C6		120.8 (3)	C13	3—C12—C11		119.9 (5)
C4—C5—H5		119.6	C13	3—С12—Н12		120.1
С6—С5—Н5		119.6	C11	—С12—Н12		120.1
С7—С6—С5		119.8 (3)	C12	2—C13—C14		119.7 (5)
C7—C6—Cl1		120.4 (3)	C12	2—С13—Н13		120.2
C5—C6—Cl1		119.9 (3)	C14	4—C13—H13		120.2
С6—С7—С2		121.1 (3)	C13	3—С14—С9		122.2 (4)
С6—С7—Н7		119.4	C13	3—C14—H14		118.9
С2—С7—Н7		119.4	С9-			118.9
N1—C8—C9		110.2 (3)				
C8—N1—C1—C	2	178.8 (3)	C3-	—С2—С7—С6		-0.4 (5)
N1—C1—C2—C	7	180.0 (3)	C1-	—С2—С7—С6		178.5 (3)
N1—C1—C2—C	3	-1.2 (5)	C1-	—N1—C8—C9		-121.1 (4)
С7—С2—С3—О	1	-179.6 (3)	N1-			-84.3 (4)
C1—C2—C3—O	1	1.5 (5)	N1-	C8C10		94.8 (4)
C7—C2—C3—C	4	0.4 (4)	C14	I—C9—C10—C11		-0.1 (5)

C1—C2—C3—C4	-178.4 (3)	C8—C9—C10—C11	-179.2 (3)
O1—C3—C4—C5	179.8 (3)	C9—C10—C11—C12	-0.5 (6)
C2—C3—C4—C5	-0.2 (5)	C10-C11-C12-C13	0.9 (7)
C3—C4—C5—C6	-0.1 (5)	C11—C12—C13—C14	-0.9 (7)
C4—C5—C6—C7	0.2 (5)	C12—C13—C14—C9	0.3 (6)
C4—C5—C6—Cl1	179.8 (3)	C10-C9-C14-C13	0.2 (5)
C5—C6—C7—C2	0.1 (5)	C8—C9—C14—C13	179.3 (3)
Cl1—C6—C7—C2	-179.6 (2)		
Hydrogen-bond geometry (Å, °)			

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
01—H1…N1	0.82	1.87	2.597 (4)	148

Fig. 1

